一、3d打印在医疗领域应用?
一、运用3D打印制造医疗模型和手术导板
医生可以运用患者的CT数据来进行三维建模,通过三维建模将数据导入到3D打印机,然后用3D打印机将患者的数据模型打印出来。这样可以更好帮助医生更为直观地观测到患者需要手术部位的三维结构。从而帮助医生在手术治疗时定制更好的手术方案,从而提升手术成功率、降低手术风险。
二、运用3D打印制造人体植入物
如患者有骨肿瘤、骨骼缺损、颌面损伤、颅骨修补等骨科问题,用一般的修复产品是难以满足患者的治疗需求。因为每个患者的实际情况不一,需要特定制作的植入物才能帮助患者修复成功。同样的还有口腔齿科,也是因为人体口腔牙齿的排列情况、受损情况、实际医疗情况不一,也是需要高度的定制。因此,不管是骨科还是齿科,都需要运用3D打印技术来为患者进行量身定制,让植入物医疗更加精准、,并且有效减轻医资力量紧缺的问题。
三、运用3D打印制造康复器械
3D打印为矫正鞋垫、仿生手、助听器等康复器械产生的真正价值不单单是是完成精准的定制化,更关键反映在让精准、高效的数字化制造技术替代手工制作方式,减少生产周期。以助听器举例,传统工艺制作,技师必须根据患者的耳道模型做出注塑模具,随后对模具进行钻音孔等后处理。而运用3D打印机制作助听器只需将扫描的CAD文件转成3D打印机可读取的设计文件,进一步打印出来就可以了。现阶段市面上的大型工业3D打印机除去工业运用外,也可运用于医疗模型打印。
四、运用3D打印制造生物器官
这里不再多叙述,就以2019年4月的一篇报道为例,在以色列一所大学里,人们3D患者的生物组织成功地打印出一个小型心脏,并且具有细胞、血管、心室和心房等基本功能的完美的“心脏”。虽然无法直接运用到人体,也有诸多因素仍无法克服,但这次打印心脏成功,是3D打印直接打印生物组织的一次重大突破。
二、3d打印技术在航天领域应用?
(1)缩短新型航空航天装备的研发周期。
航空航天技术是国防实力的象征,也是国家政治的体现形式,世界各国之间竞争异常激烈。因此,各国都想试图以更快的速度研发出更新的武器装备,使自己在国防领域处于不败之地。而金属3D打印技术让高性能金属零部件,尤其是高性能大结构件的制造流程大为缩短。无需研发零件制造过程中使用的模具,这将极大的缩短产品研发制造周期。
国防大学军事后勤与军事科技装备教研部教授李大光表示上世纪八九十年代,要研发新一代战斗机至少要花10-20年的时间,由于3D打印技术最突出的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,所以如果借助3D打印技术及其他信息技术,最少只需3年时间就能研制出一款新战斗机。加之该技术的高柔性,高性能灵活制造特点,以及对复杂零件的自由快速成型,金属3D打印将在航空航天领域大放异彩,为国防装备的制造提供强有力的技术支撑。
国产大飞机C919上的中央翼缘条零件是金属3D打印技术的在航空领域的应用典型。此结构件长3米多,是国际上金属3D打印出最长的航空结构件。如果采用传统制造方法,此零件需要超大吨位的压力机锻造而成,不但费时费力,而且浪费原材料,目前国内还没有能够生产这种大型结构件的设备。
所以,要想保证飞机研发进程及安全性,我们必须向国外订购此零件,且从订货到装机使用周期长达2年多时间,这严重阻碍了飞机的研发进度。采用金属3D打印技术打印出的中央翼缘条,其研制时间紧一个月左右,其结构强度达到甚至超过了锻件使用标准,完全符合航空使用标准。金属3D打印技术的使用在很大程度上缩短我国大飞机的研制,让研制工作得以顺利进行。
而这仅是金属3D打印技术应用在航空航天领域的一个缩影而已。
(2)提高材料的利用率,节约昂贵的战略材料,降低制造成本。
航空航天制造领域大多都是在使用价格昂贵的战略材料,比如像钛合金、镍基高温合金等难加工的金属材料。传统制造方法对材料的使用率很低,一般不会大于10%,甚至仅为2%-5%。材料的极大浪费也就意味着机械加工的程序复杂,生产时间周期长。如果是那些难加工的技术零件,加工周期会大幅度增加,制造周期明显延长,从而造成制造成本的增加。
金属3D打印技术作为一种近净成型技术,只需进行少量的后续处理即可投入使用,材料的使用率达到了60%,有时甚至是达到了90%以上。这不仅降低了制造成本,节约了原材料,更是符合国家提出的可持续发展战略。
2014年在中国科学院一个专题讨论会上,北航王华明教授曾表示,中国现在仅需55天就可以打印出C919飞机驾驶舱玻璃窗框架。王华明还说,欧洲一家飞机制造公司表示,他们生产同样的东西至少要2年,光做模具就要花200万美元,而中国采用3D打印技术不仅缩短了生产周期,提高了效率,而且节省了原材料,极大地降低了生产成本。
(3)优化零件结构,减轻重量,减少应力集中,增加使用寿命。
对于航空航天武器装备而言,减重是其永恒不变的主题。不仅可以增加飞行装备在飞行过程中的灵活度,而且增加载重量,节省燃油,降低飞行成本。但是传统的制造方法已经将零件减重发挥到了极致,再想进一步发挥余力,已经不太现实。
但是3D技术的应用可以优化复杂零部件的结构,在保证性能的前提下,将复杂结构经变换重新设计成简单结构,从而起到减轻重量的效果。而且通过优化零件结构,能使零件的应力呈现出最合理化的分布,减少疲劳裂纹产生的危险,从而增加使用寿命。通过合理复杂的内流道结构实现温度的控制,使设计与材料的使用达到最优化,或者通过材料的复合实现零件不同部位的任意自由成型,以满足使用标准。
战机的起落架是承受高载荷,高冲击的关键部位,这就需要零件具有高强度,高的抗冲击能力。美国F16战机上使用3D技术制造的起落架,不仅满足使用标准,而且平均寿命是原来的2.5倍。
(4)零件的修复成形。
金属3D打印技术除用于生产制造之外,其在金属高性能零件修复方面的应用价值绝不低于其制造本身。就目前情况而言,金属3D打印技术在修复成形方面所表现出的潜力甚至是高于其制造本身。
以高性能整体涡轮叶盘零件为例,当盘上的某一叶片受损,则整个涡轮叶盘将报废,直接经济损失价值在百万之上。较之前,这种损失可能不可挽回,令人心痛,但是基于3D打印逐层制造的特点,我们只需将受损的叶片看作是一种特殊的基材,在受损部位进行激光立体成形,就可以回复零件形状,且性能满足使用要求,甚至是高于基材的使用性能。由于3D打印过程中的可控性,其修复带来的负面影响很有限。
事实上,3D打印制造的零部件更容易得到修复,匹配性更佳。相较于其他制造技术,在3D修复过程中,由于制造工艺和修复参数的差距,很难使修复区和基材在组织、成分以及性能上保持一致性。但是在修复3D成形的零件时就不会存在这种问题了。修复过程可以看作是增材制造过程的延续,修复区与基材可以达到最优的匹配。这就实现了零件制造过程的良性循环,低成本制造+低成本修复=高经济效益。
(5)与传统制造技术相配合,互通互补。
传统制造技术适用于大批量成形产品的生产,而3D打印技术则更适合个性化或者精细化结构产品的制造。将3D打印技术和传统制造技术相结合,各取所长,充分发挥各自的优势,使制造技术发挥更大的威力。
比如,对于表面要求高质量性能,但中心要求性能一般的零件而言,可以使用传统制造技术生产出中心形状的零件,然后使用激光立体成型技术在这些中心零件上直接成型表面零件,这样就生出了表面性能高,中心要求一般的零件,节省了工艺的复杂程度,减少了生产流程。这种互补的生产组合,在零部件的生产制造中具有重要的实际应用价值。
再者,对于外部结构简单,但是内部结构复杂的零部件,其采用传统制造技术制造内部复杂结构时,过程繁琐,后续加工工序复杂这就造成了生产成本,延长了生产周期。采用外部使用传统制造技术而内部采用3D打印技术直接近净成形,这样只需少量后续工序就可完成产品的制造,这缩短了生产周期,降低了成本,发挥出传统技术和新技术的完美匹配制造的结合,实现了互通互补。
航空航天作为3D打印技术的首要应用领域,其技术优势明显,但是这绝不是意味着金属3D打印是无所不能的,在实际生产中,其技术应用还有很多亟待决绝的问题。比如目前3D打印还无法适应大规模生产,满足不了高精度需求,无法实现高效率制造等。而且,制约3D打印发展的一个关键因素就是其设备成本的居高不下,大多数民用领域还无法承担起如此高昂的设备制造成本。但是随着材料技术,计算机技术以及激光技术的不断发展,制造成本将会不断降低,满足制造业对生产成本的承受能力,届时,3D打印将会在制造领域绽放属于它的光芒。
三、3D打印在科学领域的作用?
一、3D打印在汽车行业的用途
相比较于传统的工艺,3D打印技术为汽车制造行业带来的优势不容小觑。利用3D打印技术,可以在数小时或数天内制作出概念模型,由于3D打印的快速成型特性,汽车厂商可以应用于汽车外形设计的研发。相较传统的手工制作油泥模型,3D打印能更精确地将3D设计图转换成实物,而且时间更短,提高汽车设计层面的生产效率。目前许多厂商已经在设计方面开始利用3D打印技术,比如宝马、奔驰设计中心。
二、3D打印在航空航天方面的用途
为适应新时代国防、科技事业发展的需求,我国有关部门采取了多种措施来推动航空航天事业的建造。在这个过程中,前沿技术所发挥的作用也得到了充分重视,借助3D打印等新兴技术来推进飞机零部件的制造工艺提高,也成为了业界共识。
三、3D打印在医疗器械方面的用途
3D打印技术由于操作便捷、模型结构精确等特点,目前已在骨科领域广泛应用,且3D打印技术的临床效益显著。通过实物模型可以更好地与患者及家属沟通,解释和交流病情,而至于3D打印生物器官方面,也是未来一大趋势,但是在医疗领域里,3D打印目前最重要的角色是生产医疗器械原型机。除此之外,3D打印技术还可以把CT和MRA的图像打成3D模型,可以做设计、分析、测量、检查等方面的工作。
四.3D打印对于我们个人的应用
相信大家在自己的日常生活中,都有一些喜欢的小东西,可能是很久之前买的,现在已经买不到了,突然就很想要一个复制品。或者不小心弄坏了,想要一个一模一样的的复制品,以现在传统制造业的加工工艺来看,从设计到生产需要大量的时间,而且成本花费会非常高,所以往往会给自己带来困扰,但是3D打印的出现就会让您摆脱这种烦恼,您只需要提供一张它的照片和尺寸,我们就可以帮您在3天之内完成,然后送到你的手上。还有在日常生活的中看到的不知名的小玩意,不知道怎样购买的,3D打印都可以做到,真正实现了高相似度批量快速生产。
四、3d打印技术在服饰领域的影响?
3D打印技术的优势在服装行业中尤其明显,从第一款3D打印的连衣裙面世后,打开了时代的潮流大门。许多知名设计师纷纷把3D打印技术与服装融合设计出充满未来科技感的服饰,依靠着3D打印这项科技创新给服装行业带来了无限的可能。
服饰品设计与3D打印技术的结合,有赖于审美意识多元化与3D打印技术的不断发展,尤其是当前人们对“个性”的追求以及3D打印技术可减少服饰品设计成本与周期等优势,极大促进了3D打印技术在服饰品设计中的应用与实践。
五、3D打印技术在法学领域的应用?
在工业4.0的发展浪潮中,工业机器人、3D打印、云计算、虚拟现实、人工智能等都在迅速的发展,在各行业中大放异彩。3D打印作为新兴技术在我国和工业4.0的发展规划中有比较重要的位置,那么在不同的领域中,3D打印能应用于哪些领域呢?3D打印又能用来做什么呢?
3D打印的应用领域主要集中在消费电子、工业器械、汽车、航空、医疗、建筑、科研等领域。经过多年的发展,3D打印在个人使用方面已经有较广的应用范围,正在逐步向家庭应用延伸。
一、个人领域
经过这些处的发展,在个人使用方面,消费级的3D打印机性价比高、运行稳定、打印精度高的特点,在不断的深入着各个家庭环境,现3D打印机企业在大力推广普及消费级的3D打印机,在不断的开发和优化产品,现价格已经做到千元左右,使得价格已经不再成为消费者选择的障碍,消费级3D打印机已不再满足静态的物品、玩具或其他模型,并开始大量打印无人机、机器人、机甲战车等热门的智能化产品。有消费者使用3D打印机1:1的打印出了兰博基尼。
二、家庭领域
在家庭领域使用3D打印机是未来的一大趋势,3D打印机厂商希望能将3D打印机做成每家的必须品,如衣架、碗筷等日常用品都通过3D打印机打印出来;如用户丢失某一件物品,也可以通过自行设计或下载通用模型来打印,这种通过自已制作的方式比去购买更能增加家庭氛围。
三、教育领域
3D就慢在教育方面的应用应该是普及率最高的,众多院校都在探索3D打印技术与教学,开办3D打印特色课程,激发3D打印技术在教育方面的应用。随着3D打印在教育领域的发展,社会对3D打印的认知程度越来越高,相信在未来3D打印的想象空间将进一步扩大。
四、企业领域
3D打印也在走向企业,现技术更新快,传统方面的制造零部件已经不能符合企业的发展了,一些嗅觉敏感的企业已经开始借助3D打印来优化生产流程,达到节约成本,提高效益的目的。通过3D打印技术来压缩产品研发与样品制造方面的时间成本,在一些快速消费行业内能够大大加强企业的竞争力。
3D打印能大大减少在生产过程中原材料的损耗,并且在复杂、精密、个性化等领域,传统的生产工艺难以实现在3D打印方面不存在任何问题。相信在不久的将来,3D打印能够给我们的生活带来更多的变化。3D打印能更深入我们的生活,并能在更多的领域中发挥作用。
六、3D打印在经济领域的应用?
3D打印也在走向企业,现技术更新快,传统方面的制造零部件已经不能符合企业的发展了,一些嗅觉敏感的企业已经开始借助3D打印来优化生产流程,达到节约成本,提高效益的目的。
通过3D打印技术来压缩产品研发与样品制造方面的时间成本,在一些快速消费行业内能够大大加强企业的竞争力。
七、3d打印在文化创意领域的应用?
3D打印文创产品产业也将会是我国乃至全世界的主流产业之一。
首先,该技术能够为独一无二的文物和艺术品建立一个真实准确完整的三维数字档案,用3D打印技术可以随时随地并且高保真的把这个数字模型再现为实物。
第二,3D打印技术取代了传统的手工制模的工艺,在作品精细度、制造效率方面都带来了极大的改善和提高,对于有实物样板的作品在
编辑、放大、缩小、原样复制等方面都能够更为直接准确,可以高效的实现小批量的生产,促进文化的传播和交流。
第三,该技术带来了大量的跨界整合和创造的机会,尤其是给艺术领域的艺术家们带来了更为广阔的创作空间,在文物和高端艺术品的复制修复衍生品开发方面的作用非常明显,对于该行业是一个革命性的进步。
八、3d打印技术在医学领域的特点?
3D打印技术在医学领域的特点是更真实性。
九、3d打印技术在医疗领域的使用?
3D打印技术在医疗领域的使用如下。医疗器具,特别是定制化医疗器具,是十分匹配3D打印特点的一个领域,目前在齿科,骨科植入体,康复矫形器等方面有着良好的前景。
3D打印技术能够满足医疗模具的个性化需求,为患者打造出符合身体条件情况的替代模具。
十、3D打印技术在能源领域的应用?
传统化石然燃料
关于传统能源(化石燃料),美国能源部(DOE)多年来一直为先进制造业研究提供资金。2018年,15个项目共获得880万美元用于测试其化石燃料系统技术。由DNV GL运营的一个项目将研究使用属性梯度作为超临界CO2动力循环技术的微通道换热器。联合技术研究中心正在开发一种计算方法,用于预测涡轮发动机中添加制造的镍基超合金零件的机械性能。
3D打印技术在燃气轮机制造中的应用已从原型试制逐渐走向实际生产。德国西门子公司利用3D打印技术成功制造和测试了镍基超级合金材料的航改燃气轮机干式低排放预混合器。英国罗-罗公司在新一代大涵道比涡扇发动机核心机上使用3D打印部件和陶瓷基复合材料,燃油效率提高25%,同时排放降低。GE还出货了9000多个3D打印燃气轮机组件。
核电
在核领域,俄罗斯国有核电公司Rosatom成立了一家开发3D打印技术的公司,该公司开发了用于生产电源组件的Gen II打印机。西门子在斯洛文尼亚的Krko核电站安装了一个用于消防泵的金属叶轮。
中国核动力研究设计院与南方增材科技有限公司,曾联合发起ACP100反应堆压力容器增材制造(3D打印)项目。使用大型电熔3D打印技术,可精确地实现结构复杂的大型金属构件一体成型,为核电装备的高质量、高效率、低成本制造开辟了一条新的道路。经过技术鉴定,3D打印试件的产品性能可达到甚至部分优于锻件产品。
核燃料元件制造是集设计与加工于一体的高端精密制造,结构复杂,需多种工序交叉作业加工才能完成 。中核北方核燃料元件有限公司(二〇二厂)使用选择性激光熔化3D打印技术制造了CAP1400自主化燃料原型组件下管座。
BLT-S300采用选择性激光熔化(SLM)技术,通过逐层熔化金属粉末的制造方式,完成传统机械加工无法制造的复杂金属结构零件,制备的成形产品拥有致密性好、尺寸精度高的特点。同时金属3D打印快速制造的技术特点,能够缩减产品开发周期,降低设计与制造成本,快速、高性能的实现核燃料元件开发与制备。
太阳能
太阳能(光伏发电)似乎是应用3D打印的最不可能的能源格式,但研究人员对3D打印太阳能电池的潜力持乐观态度。麻省理工学院的科学家认为,3D打印的效率将提高20%,成本只是传统技术的一半。澳大利亚联邦科学与工业研究组织(CSIRO)以A3板的形式3D打印太阳能电池卷,可应用于建筑物表面以产生可再生能源。
风能
寻找更快、更具成本效益的方法来制造风电机组,以及研究如何更好地利用风能,都是至关重要的,而叶片的3D打印技术则有希望解决这两个问题。在缩短风电机组生产时间和降低制造成本的问题上,3D打印叶片模具也是一个重要的进步。目前,叶片长度平均超过50米,而且还需要足够高的强度来承受巨大的载荷,因此叶片生产流程是高耗能、高成本和高耗时的。
通常,需要用一个阳模来制造叶片模具(阴模),再用阴模来制造玻璃钢叶片。然而,如果引入3D打印技术,将可以直接将第一步取消,降低制造成本,并给研究人员以时间和自由,来对新的性能进行试验,并提高设计的灵活性。
虽然目前的研究仅针对于简化风机叶片的制造过程,但3D打印技术也有助于其他风电机组部件的生产,以便使风电的成本更低。
当然,可再生能源系统需要某处存储器捕获的能量,即电池。曼彻斯特城市大学的研究人员开发出一种能够制造石墨烯电池的3D打印机,哈佛大学的一个团队已经开发出一种3D打印锂离子电池的方法。世界各地的其他研究人员和工程师在3D打印储能方面取得了其他进展,例如苏黎世联邦理工学院的“氧化还原液流”电池。与制造业一样,3D打印将提高能源生产,存储和分配的效率。