农业数据自身的特征包括?

admin 2017-08-03 大数据 227 次浏览

一、农业数据自身的特征包括?

农业大数据的特性包括大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。包括以下几种:

(1) 从领域来看,以农业领域为核心(涵盖种植业、林业、畜牧业等子行业),逐步拓展到相关上下游产业(饲料生产,化肥生产,农机生产,屠宰业,肉类加工业等),并整合宏观经济背景的数据,包括统计数据、进出口数据、价格数据、生产数据、乃至气象数据等。(2)从地域来看,以国内区域数据为核心,借鉴国际农业数据作为有效参考;不仅包括全国层面数据,还应涵盖省市数据,甚至地市级数据,为精准区域研究提供基础;(3)从粒度来看,不仅应包括统计数据,还包括涉农经济主体的基本信息、投资信息、股东信息、专利信息、进出口信息、招聘信息、媒体信息、GIS坐标信息等。

(4)从专业性来看,应分步实施,首先是构建农业领域的专业数据资源,其次应逐步有序规划专业的子领域数据资源,例如针对畜品种的生猪、肉鸡、蛋鸡、肉牛、奶牛、肉羊等专业监测数据。

二、农业数据自身的特征包括什么?

农业大数据的特性包括大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。包括以下几种:

(1) 从领域来看,以农业领域为核心(涵盖种植业、林业、畜牧业等子行业),逐步拓展到相关上下游产业(饲料生产,化肥生产,农机生产,屠宰业,肉类加工业等),并整合宏观经济背景的数据,包括统计数据、进出口数据、价格数据、生产数据、乃至气象数据等。(2)从地域来看,以国内区域数据为核心,借鉴国际农业数据作为有效参考;不仅包括全国层面数据,还应涵盖省市数据,甚至地市级数据,为精准区域研究提供基础;(3)从粒度来看,不仅应包括统计数据,还包括涉农经济主体的基本信息、投资信息、股东信息、专利信息、进出口信息、招聘信息、媒体信息、GIS坐标信息等。

(4)从专业性来看,应分步实施,首先是构建农业领域的专业数据资源,其次应逐步有序规划专业的子领域数据资源,例如针对畜品种的生猪、肉鸡、蛋鸡、肉牛、奶牛、肉羊等专业监测数据。

三、大数据的特征包括( ).

大数据的特征包括高维度性、快速增长性、多样化性、不一致性和价值密度大。

高维度性

大数据的高维度性指的是数据量庞大,包含的特征维度多。传统的数据处理方式往往无法有效处理高维数据,因此需要采用特殊的技术和工具来处理。

快速增长性

随着互联网和物联网的发展,数据量呈指数级增长。大数据瞬息万变,需要实时收集和分析数据,以便及时应对业务需求变化。

多样化性

大数据不仅包括结构化数据,还有文本、图片、音频、视频等非结构化数据。处理多样化数据需要灵活的处理方法和算法。

不一致性

大数据往往来源于不同的地方,数据质量参差不齐,可能存在重复、错误甚至矛盾。处理大数据需要解决数据不一致性带来的挑战。

价值密度大

大数据中蕴含着海量有用信息,可以帮助企业发现商机、优化流程、提高效率。挖掘大数据的潜在价值是企业发展的重要动力。

四、大数据的特征包括( )

大数据的特征包括( )

大数据是一个在当今信息时代备受关注的重要领域。在数字化时代,随着各行各业的信息产出和积累不断增长,如何有效地管理和利用这些海量数据成为关键问题。大数据的特征不仅体现在数据的规模,还包括多个方面。

1. 高速度

大数据的特征之一是高速度。随着互联网的普及和移动设备的普及,信息传输的速度变得异常迅速。大数据处理需要快速响应,以适应实时的数据更新和处理需求。

2. 多样性

大数据并不仅仅指一种类型的数据,而是包含了结构化数据和非结构化数据,如文本、图像、音频、视频等多种形式。因此,大数据处理需要具备处理多样数据的能力,从而更好地挖掘数据的潜力。

3. 大规模

大数据的另一个特征是其规模之大。传统的数据处理工具和方法往往无法胜任海量数据的处理,因此需要采用分布式计算等技术来处理大规模数据,以提高计算效率。

4. 价值密度低

大数据通常包含大量无用信息和噪声,因此其价值密度较低。对于大数据的处理,需要通过数据清洗、过滤等方式提炼出有意义的信息,以便更好地用于决策和分析。

5. 数据不断增长

随着时间的推移,大数据的量会不断增长,这也是大数据的一个特征。随着数据量的增加,如何有效地管理和利用这些数据成为了企业和组织面临的挑战。

6. 高维度

大数据往往涉及到多个维度的数据,如时间、地点、用户等,这使得数据处理变得更加复杂。对于大数据的分析,需要考虑多个维度之间的关联和影响,以更全面地理解数据。

7. 安全性挑战

由于大数据的规模庞大,涉及到用户的隐私信息和商业机密,因此安全性成为处理大数据时需要重点关注的问题。数据加密、访问控制等技术是保障大数据安全的重要手段。

8. 可视化分析

针对大数据的高维度和多样性特点,可视化分析成为了一种重要的分析工具。通过可视化技术,将复杂的数据呈现为直观的图表和图像,有助于用户更好地理解数据中的模式和规律。

结语

以上是关于大数据特征的介绍,大数据的特点不仅仅是数据的规模庞大,还包括数据的速度、多样性、价值密度、安全性等多个方面。对于企业和组织来说,有效地利用大数据,挖掘数据中的价值,将有助于提升竞争力和创新能力。

五、大数据的特征包括(

大数据的特征包括(

大数据,如今成为了信息时代的新宠,随着互联网、传感器技术等数据产生源的快速增长,人类社会正处于信息爆炸的时代。大数据的特征十分鲜明,主要包括以下几个方面:

1. 量大

大数据的首要特征便是数据量巨大,数据的总量已经远远超过了我们过去所面对的小范围数据,无法被传统的数据处理工具所处理。不仅数据的总量大,而且数据的增速也非常迅猛,呈现出指数级的增长趋势。

2. 类型多

除了数量庞大之外,大数据还具有多样性,包含了结构化数据、半结构化数据和非结构化数据。结构化数据是传统数据库中存储的表格形式的数据,半结构化数据则是具有一定结构但不符合传统关系数据库表格的数据,而非结构化数据则是没有固定格式的数据。

3. 速度快

大数据处理的速度要求远远高于传统数据处理的速度,要求在很短的时间内对数据进行高效处理和分析。这是因为大数据通常是实时或接近实时生成的,需要在数据产生之际对其进行处理和应用。

4. 价值密度低

大数据中的价值往往隐藏在海量数据之中,且不同数据的价值密度差异很大。进行大数据分析需要从庞大的数据集中挖掘出有用信息和洞察,这就需要相关技术和工具来帮助实现数据的价值提炼。

5. 来源多样

大数据的来源非常多样化,包括社交网络数据、传感器数据、金融数据、医疗数据等各种领域的数据。这些数据源的多样性也增加了对大数据处理和分析的挑战,需要综合利用多种数据处理技术来应对不同数据源的需求。

6. 不确定性高

大数据的数据质量较低,数据源的不确定性较高,其中可能夹杂着噪音和错误数据。因此,在处理大数据时需要考虑到数据的不确定性,并采取相应的措施来增强数据分析的准确性和可靠性。

综上所述,大数据的特征包括数据量大、类型多、速度快、价值密度低、来源多样和不确定性高等多个方面,这使得大数据处理和分析成为一项极具挑战性的任务。随着技术的发展和算法的改进,我们对大数据的理解和利用也将日益深入,为各行各业带来越来越多的机遇与发展空间。

六、优秀数据指标的特征包括?

1、精确性

这个精确有二个层面的意思,一个是数据目标在技能完成过程中,是精确的,不会出现代码逻辑写错,源数据取错。二个计算源数据的源头的数据是对的,如果计算数据目标的根底数据都是错了,那就更666了!一个公司数据搜集与记录的精确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。

2、有用性

数据目标的能真实反映要能衡量相对的事务场景商业目标,例如:要针对衡量一个网站流量质量设计一个目标,运用UV来衡量是过错的。运用跳出率来衡量,有一定的有用性,但还是不行有用;运用转化率或许才是比较合适的(不同公司所要寻求的商业目标不一样,所以设计的数据目标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。

3、周期性

数据目标需求定时去复盘。像KPI的目标定义,例如:销售额或许依据当前商业的目标不同,核算口径或许会产生很大的变化。一起,对各个数据目标也要定时进行复盘,是否还能够持续衡量,数据目标还是否有意义。随时KPI目标的变化,往往许多目标的口径也要变更,数据开发最怕就是这个,口径改换要重刷历史。

4、可完成性

在实际企业中,或许受限数据的完整性要素,许多目标没有办法核算得到。例如:公司的市场占有率往往是很难计算,由于整个市场份额这个数据很难获取。电商中每个订单的本钱的核算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据目标的可完成性上往往需求先完成简略的,再依据数据使用深入,数据团队技能强大不断再完善复杂的目标

七、大数据的思维特征包括什么数据化管理?

1、规模性

随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。

2、多样性

多样性主要体现在数据来源多、数据类型多和数据之间关联性强这三个方面。

数据来源多,企业所面对的传统数据主要是交易数据,而互联网和物联网的发展,带来了诸如社交网站、传感器等多种来源的数据。

而由于数据来源于不同的应用系统和不同的设备,决定了大数据形式的多样性。大体可以分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。

数据类型多,并且以非结构化数据为主。传统的企业中,数据都是以表格的形式保存。而大数据中有70%-85%的数据是如图片、音频、视频、网络日志、链接信息等非结构化和半结构化的数据。

数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。

3、高速性

这是大数据区分于传统数据挖掘最显著的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。

4、价值性

尽管企业拥有大量数据,但是发挥价值的仅是其中非常小的部分。大数据背后潜藏的价值巨大。由于大数据中有价值的数据所占比例很小,而大数据真正的价值体现在从大量不相关的各种类型的数据中。挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,并运用于农业、金融、医疗等各个领域,以期创造更大的价值。

八、大数据金融的七大特征?

大数据金融具有七大特征:高维、多源、实时性、不确定性、异构性、安全性和价值密度大。

高维指数据特征维数多,难以传统分析法处理;多源指采集数据来自不同的渠道,各异性不一;实时性指数据采集、处理和分析需要实时完成;不确定性指数据的不确定性较高,需采用多种方法进行分析;异构性指业务命题和数据源中数据的不匹配性;安全性指大数据金融的数据存储与传输对信息安全有要求;价值密度大指对数据的挖掘分析能够带来重要的经济价值。

九、5级技术三大特征包括?

5G三个技术特征:高速率 低时延 大连接

十、四大生命特征包括哪些?

1、新陈代谢:从外界摄取物质和能量,将它们转化为生命本身的物质,和贮存在化学键中的化学能,分解生命物质,将能量释放出来,供生命活动之用。

2、生长特性:生物体能通过新陈代谢的作用而不断地生长、发育,遗传因素在其中起决定性作用,外界环境因素也有很大影响。

3、应激能力:生物接受外界刺激后会发生反应,而动物的运动受神经系统的控制。

4、遗传和繁殖能力:生物体能不断地繁殖下一代,使生命得以延续。生物的遗传是由基因决定的,生物的某些性状会发生变异;没有可遗传的变异,生物就不可能进化。