人工智能发展历程的第一次热潮是20世纪50年代神经网络相关基础理论的提出?

admin 2017-08-03 人工智能 62 次浏览

一、人工智能发展历程的第一次热潮是20世纪50年代神经网络相关基础理论的提出?

人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。

另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。

理论与实践效果带来第一次神经网络的浪潮。

然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。

许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。

二、人工智能简史,好词好句?

人工智能是人类历史上的一项,具有开创性的发明。

三、人工智能的发展历程可分为哪两个?

1)1956年-1980年

1956年达特茅斯会提出了人工智能这一词汇,标志着人工智能正式诞生。

而这个阶段,人工智能已经在问题求解以及语言处理等方面取得了一些进步。但是,当时的技术条件并不能实现预期的目标。到了70年代,投资者和政府开始收缩人工智能经费,人工智能开始进入低谷期。

2)1980年-1993年

80年代,人工智能专家系统崭露头角,商业价值被广泛接受,人工智能研究重新兴起。但并没有持续多久,就被生产出来的个人电脑在性能上完全碾压,远远超过使用了AI技术的LISP机,AI再一次经历了寒冬。

3)1993年-至今

之后以神经网络技术为代表的AI技术逐步发展,人工智能开始进入缓慢发展期。1997年深蓝战胜国际象棋世界冠军卡斯帕罗夫,使得AI再次被热议。而随着现在科技的快速发展,硬件成本不断降低,数据量积累不断增大,AI技术不断成熟,人工智能又开始进入爆发期。各种人工智能产品开始如雨后春笋,不断的发展壮大起来。

四、人工智能首次冲击是哪年?

人工智能是在1956年达特茅斯会议上首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。虽然,这个梦想很快被一系列未果的尝试所击碎,但却开启了人工智能漫长而曲折的研究历程。

  人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。理论与实践效果带来第一次神经网络的浪潮。然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。

  人工智能的第二次高潮始于上世纪80年代。BP(Back Propagation)算法被提出,用于多层神经网络的参数计算,以解决非线性分类和学习的问题。另外,针对特定领域的专家系统也在商业上获得成功应用,人工智能迎来了又一轮高潮。然而,人工神经网络的设计一直缺少相应的严格的数学理论支持,之后BP算法更被指出存在梯度消失问题,因此无法对前层进行有效的学习。专家系统也暴露出应用领域狭窄、知识获取困难等问题。人工智能的研究进入第二次低谷。

  人工智能的第三次高潮始于2010年代。深度学习的出现引起了广泛的关注,多层神经网络学习过程中的梯度消失问题被有效地抑制,网络的深层结构也能够自动提取并表征复杂的特征,避免传统方法中通过人工提取特征的问题。深度学习被应用到语音识别以及图像识别中,取得了非常好的效果。人工智能在大数据时代进入了第三次发展高潮。

五、人工智能的发展历程分为哪六个阶段?

人工智能的发展历程基本划分为以下六个阶段:

- 起步发展期:1956年—20世纪60年代初,人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。   

- 反思发展期:20世纪60年代—70年代初,人工智能的发展出现了质的飞跃,人们对于人工智能的研究有了更大的期望,逐渐将人工智能应用到了不切实际的事物上来,这必然导致人工智能发展的断层,使得其进入低谷期。 

- 应用发展期:20世纪70年代初—80年代中,人们开始将人工智能的理论研究运营到实际上来。专家系统在医疗、化学、地质等领域取得成功,使人工智能走入应用发展的新高潮。 

- 低迷发展期:20世纪80年代中—90年代,随着人工智能的应用规模不断扩大,人们对于人工智能的应用出现知单一、认识不全面等问题。

- 复苏发展期:20世纪90年代—21世纪初,随着计算机技术的快速发展和人工智能理论的不断完善,人工智能开始走向复苏。

- 繁荣发展期:21世纪初至今,随着大数据、云计算、深度学习等新技术的出现,人工智能得到了快速发展和应用。

六、人工智能发展历程?

人工智能(Artificial Intelligence,简称AI)是指通过计算机技术实现智能化的一种技术。其发展历程可以大致分为以下几个阶段:

人工智能诞生阶段(1956-1974年):1956年,美国达特茅斯学院举办了首次人工智能会议,标志着人工智能学科的正式诞生。在这个阶段,人工智能的研究主要集中在推理、学习、自然语言处理等方面。

知识库阶段(1974-1980年代):在这个阶段,人工智能研究开始注重利用专家知识来解决问题。研究者将专家知识存储在计算机中,形成专家系统,以帮助决策和问题求解。

过渡期阶段(1980-1995年):这个阶段是人工智能发展的低潮期,主要原因是专家系统的应用受到限制,无法广泛应用于实际应用领域。同时,神经网络、遗传算法等新的研究方法也开始出现。

统计学习阶段(1995-2010年):在这个阶段,机器学习开始成为人工智能的主要研究方向,特别是统计学习的兴起。此外,随着计算机硬件和互联网技术的发展,人工智能技术开始应用于搜索引擎、推荐系统、自然语言处理等领域。

深度学习阶段(2010年至今):深度学习是机器学习的一种,通过神经网络模拟人脑神经元之间的联接来实现对数据的学习和处理。随着计算机性能的提高和大数据的普及,深度学习技术得到了广泛应用,如人脸识别、语音识别、自动驾驶等。

总体来说,人工智能的发展历程经历了不断的起伏和变革,但其在各个领域的应用和发展前景仍然广阔。

七、人工智能什么时候被发明?

一、起源

提到人工智能的历史,所有书都会提到1956年度的达特茅斯会议,在这次会上人工智能的鼻祖John mcarthy是发起人,minsky也 积极参与其中,包括我们课本上非常著名的提出信息论的香农本人。

曾经麦卡锡和明斯基都曾经在贝尔实验室为香农打工,当时他们研究的核心就是图灵机,并将此作为智能活动的理论基础。

后来麦卡锡到IBM打工,遇到了研究神经网络的罗切斯特并得到了洛克菲勒基金会的资助,决定在第二年达特茅斯召开人工智能夏季研讨会,这便是人工智能名字的由来。

从1955年到1965年,人工智能进入快速发展时期,在机器学习领域,出现了“跳棋程序”并在1959年实现了人工智能战胜人类的事件打败了当时设计他的设计师Samuel,并在1962年,打败了州跳棋冠军。

在模式识别领域,1956年Oliver selfridge研发了第一个字符识别程序,并在1963年发明了符号积分程序SAINT,在1967年SAINT的升级版SIN就达到了专家级的水准。

同时美国政府也投入了2000万美元资金作为机器翻译的科研经费。当年参加达特茅斯的专家们纷纷发表言论,不出十年,计算机将成为世界象棋冠军、可以证明数学定理、谱写优美的音乐,并且在2000年就可以超过人类。

二、第一次寒冬

但在1965年人工智能迎来一个小高潮之后,质疑的声音也随之到来,Samuel设计的跳棋程序停留在了战胜周冠军,机器翻译领域因为一直无法突破自然语言理解(NLP),1966年的美国公布了一份名为“语言与机器”的报告全盘否定了机器翻译的可行性。

1969年,发起人之一的minsky发表言论,第一代神经网络(感知机perceptron)并不能学习任何问题,美国政府和美国自然基金会大幅削减了人工智能领域的研究经费。在20世纪70年代人工智能经历了将近10年左右的寒冬时期。

三、第二次高潮与寒冬

直到80年代,人工智能进入第二次发展高潮,卡耐基梅隆大学为日本DEC公司设计的XCON专家规则系统(专注于解决某一限定领域的问题,具备2500条规则,专门用于选配计算机配件,因此避免了常识问题)可以为该公司一年节省数千万美金。

同期日本政府拨款8.5亿美元支持人工智能领域科研工作,主要目标包括能够与人交流、翻译语言、理解图像、像人一样进行推理演绎的机器。

但是随后人们发现,专家系统通用性较差,未与概率论、神经网络进行整合,不具备自学能力,且维护专家系统的规则越来越复杂,且日本政府设定的目标也并未实现,人工智能研究领域再次遭遇了财政苦难,随之人工智能发展进入第二次寒冬。

四、第一次算力与算法爆发

上世纪90年代,计算机在摩尔定律下的计算机算力性能不断突破,英特尔的处理器每18-24个月晶体管体积可以缩小一倍,同样体积上的集成电路密集度增长一倍、同样计算机的处理运算能力可以翻一倍。

1989年,还在贝尔实验室的杨立坤通过CNN实现了人工智能识别手写文字编码数字图像。

1992年,还在苹果任职的李开复利用统计学方法,设计了可支持连续语音识别的Casper语音助理(Siri的前身),在1997年IBM的国际象棋机器人深蓝战胜国际象棋冠军卡斯帕罗夫(不再止步于州冠军,第一次真正意义上的战胜人类),同年两位德国科学家提出了LSTM网络可用于语音识别和手写文字识别的递归神经网络。

五、算力+算法+数据三驾马车聚齐:发展进入快车道

直到2006年,也就是我们身处的这不到20年的时间是当代人工智能快速发展的阶段,同年杰弗里辛顿发表了《learning of multiple layers of representation》奠定了当代的神经网络的全新架构。

2007年还在Stanford任教的华裔女科学家李飞飞教授,发起了ImageNet项目,开源了世界上最大的图像识别数据集(超过1400万、2万多标注类别的图像数据集)。

在2006年亚马逊的AWS的云计算平台发布,进一步大幅提升了人工智能网络模型计算所需要的算力。

同时,随着2014年4G时代的到来与智能手机大规模普及,移动互联网的极速发展,催生了覆盖人起居生活工作的方方面面的各色应用,带来了神经网络训练迭代所需的养料“海量的数据”,同时随着IoT物联网的兴起、支持分布式计算(边缘计算)的传感器时序(temporal)数据指数级生成。

六、技术发展离不开政府支持,我国将人工智能列入国家战略

2017年我国政府也引发了《新一代人工智能发展规划》明确了我国新一代人工智能发展的战略目标:到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径。

到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。

人工智能发展简史–符合事物发展本质-螺旋式上升

回顾人工智能历史发展的60多年间,有上升期、有瓶颈期、有寒冬期,但却一直不断的演进进步,正如恩格斯在《自然辩证法》所说,一切事物都是由螺旋形上升运动是由事物内部矛盾引起的,矛盾双方经过反复斗争,引起对立面的两次否定,两次转化,事物的发展从肯定到否定再到否定之否定,形成一个周期性,每一周期的终点同时又是下一周期的开端。

一个周期接着一个周期,每一周期完成时出现仿佛向出发点的复归,形成由无数“圆圈”衔接起来的无限链条,呈现出螺旋形的上升运动。

而如今的我们,正处在一个人工智能高速发展时代,且已经渗透到人们日常生产、生活、工作的方方面面,大家可能会问,为什么不是10年前、20年前而是现在?

这就不得不提人工智能三要素,分别是:算法、算力和数据,三者缺一不可。而人工智能早期发展的瓶颈,很多都是因为你三要素的一种或者多种要素的缺乏,导致人工智能产业陷入短暂的困境,如下图所示。

而如今,随着4G、5G基础网络通讯设施的快速发展,使万物互联成为可能,全球有天文数字级别的人、设备、传感器被连接,产生海量的数据,而这些数据正是人工智能算法模型迭代的充足养料。

而为什么我国有建设成为人工智能创新中心的底气?因为我们国家在网络基础设施建设方面在全球最为领先,移动互动联网渗透人们生产生活最为彻底 ,“配送下乡”的电商平台淘宝、拼多多、京东,美团等互联网“买菜”服务下沉到社区,村子里在直播玩短视频的大爷大妈,每个人都不知不觉的在享受着“人工智能”科技发展所带来的红利,同时也被“算法”支配着时间。

困在算法里的外卖小哥、内容平台利用推荐算法向你定向投喂的“猪食内容”、“人脸”信息被滥用,“算法”的偏见与歧视,正如一切事物的两面性一样、技术的发展同时一定会带来负面的影响,引发社会舆论的挑战。

如何更好的保护人们的隐私的同时,让算法更好的为人们服务?如何让人工智能将来不会“觉醒”,失去控制甚至伤害人类?如何让深度学习这个相对黑盒更具可解释性,更安全、更鲁棒?

相信诸位也跟我刚接触这个领域一样带着许多困惑。这些学界和工业界都已经有一些尝试与探讨,我希望在这本书的有限章节中向你尽可能简要但清晰的分享。

七、人工智能的未来在哪?

未来人工智能又将去向何从,会像是科幻电影里人工智能终将觉醒、他们因为不具备”人性”可以更加理智的不会错的进化统治甚至“奴役”人类?

还是由于人类生存活动使地球的生态环境不断恶化,“病毒”不断肆虐,人类无法外出,只能沉陷于由人工智能创造的虚拟环境中,像是”头号玩家”所描述的世界,在虚幻世界中实现”自我”价值?

虽然无法先知,但是可以预见的是,人工智能未来一定会具备以下趋势:

从专家系统转向通用型的认知智能,像是我们上文提到的早期只能针对问题解决问题的某个细分领域的人工智能,未来的人工智能是更加通用型的、在感知能力的基础上具备像人一样具备认知智能,除了分类、归纳、检测、识别具备推演、预测的能力;

深度学习模型从过去的黑盒不可解释,变得更加具备“可解释性”,从而通过算法模型更公平、更安全、更鲁棒;

深度学习向多模态发展,正如人类文明进行学习不仅仅是通过眼睛观看,还有“口眼耳鼻舌身意、色相声香味触法”,因此深度学习需要多传感器的信息融合进行模型学习训练与判断;

由于高级任务的带标签训练数据十分匮乏,这会促使人们进一步研究稀疏数据环境中的学习技术,比如,小样本学习和自我监督学习以及如何提升学习的效率以及如何让学习的进度追赶上数据产生的进度,增量学习也是一个解决当前现状的实用方向。

数据隐私和数据安全引起社会广泛关注,如何保护隐私的前提下同时进行模型训练迭代,联邦学习已经被大多公司和组织广泛使用。