一、人工智能的主要研究理论?
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
二、人工智能的主要研究对象是人工智能吗?
人工智能(Artificial Intelligence)主要研究用人工的方法和技术,模仿、延伸扩展的智能,实现机器智能。
人工智能是极具挑战性的领域。伴随着大数据、类脑计算和深度学习等技术的发展,人工智能的浪潮又一次掀起。目前信息技术、互联网等领域几乎所有主题和热点,如搜索引擎、智能硬件、机器人、无人机和工业4.0,其发展突破的关键环节都与人工智能有关。
三、中德人工智能研究院主要业务?
中德人工智能研究院有限公司于2017年06月23日成立。法定代表人崔岩,公司经营范围包括:人工智能设备及相关软硬件的设计、研发及销售;工业机器人视觉系统研发、生产及销售;计算机视觉软硬件开发及销售;智能机器人及电子信息科技领域内的技术开发、技术咨询、技术转让、技术服务;数据采集、存储、处理和咨询服务;数字内容服务;数据应用与服务平台开发及运营;会议服务;人工智能技术领域内的技术咨询、技术服务等。
四、人工智能的主要研究方法的区别?
由于研究者的专业和研究领域的不同以及他们对智能本质的理解有异,因而形成了不同的人工智能学派,各自采用不同的研究方法。与符号主义、联结主义和行为主义相应的人工智能研究方法为功能模拟法、结构模拟法和行为模拟法。此外,还有综合这3种模拟方法的集成模拟法。
功能
1.功能模拟法
符号主义学派也可称为功能模拟学派。他们认为:智能活动的理论基础是物理符号系统,认知的基元是符号,认知过程是符号模式的操作处理过程。功能模拟法是人工智能最早和应用最广泛的研究方法。功能模拟法以符号处理为核心对人脑功能进行模拟。本方法根据人脑的心理模型,把问题或知识表示为某种逻辑结构,运用符号演算,实现表示、推理和学习等功能,从宏观上模拟人脑思维,实现人工智能功能。
功能模拟法已取得许多重要的研究成果,如定理证明、自动推理、专家系统、自动程序设计和机器博弈等。功能模拟法一般采用显示知识库和推理机来处理问题,因而它能够模拟人脑的逻辑思维,便于实现人脑的高级认知功能。
功能模拟法虽能模拟人脑的高级智能,但也存在不足之处。在用符号表示知识的念时,其有效性很大程度上取决于符号表示的正确性和准确性。当把这些知识概念转换成推理机构能够处理的符号时,将可能丢失一些重要信息。此外,功能模拟难于对含有噪声的信息、不确定性信息和不完全性信息进行处理。这些情况表明,单一使用符号主义的功能模拟法是不可能解决人工智能的所有问题的。
结构
2.结构模拟法
联结主义学派也可称为结构模拟学派。他们认为:思维的基元不是符号而是神经元,认知过程也不是符号处理过程。他们提出对人脑从结构上进行模拟,即根据人脑的生理结构和工作机理来模拟人脑的智能,属于非符号处理范畴。由于大脑的生理结构和工作机理还远未搞清,因而现在只能对人脑的局部进行模拟或进行近似模拟。
人脑是由极其大量的神经细胞构成的神经网络。结构模拟法通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。与功能模拟法不同,结构模拟法是基于人脑的生理模型,通过数值计算从微观上模拟人脑,实现人工智能。本方法通过对神经网络的训练进行学习,获得知识并用于解决问题。结构模拟法已在模式识别和图像信息压缩领域获得成功应用。结构模拟法也有缺点,它不适合模拟人的逻辑思维过程,而且受大规模人工神经网络制造的制约,尚不能满足人脑完全模拟的要求。
行为
3.行为模拟法
行为主义学派也可称为行为模拟学派。他们认为:智能不取决于符号和神经元,而取决于感知和行动,提出智能行为的“感知——动作”模式。结构模拟法认为智能不需要知识、不需要表示、不需推理;人工智能可能可以像人类智能一样逐步进化;智能行为只能在现实世界中与周围环境交互作用而表现出来。
智能行为的“感知——动作”模式并不是一种新思想,它是模拟自动控制过程的有效方法,如自适应、自寻优、自学习、自组织等。现在,把这个方法用于模拟智能行为。行为主义的祖先应该是维纳和他的控制论,而布鲁克斯的六足行走机器虫只不过是一件行为模拟法(即控制进化方法)研究人工智能的代表作,为人工智能研究开辟了一条新的途径。
尽管行为主义受到广泛关注,但布鲁克师的机器虫模拟的只是低层智能行为,并不能导致高级智能控制行为,也不可能使智能机器从昆虫智能进化到人类智能。不过,行为主义学派的兴起表明了控制论和系统工程的思想将会进一步影响人工智能的研究和发展。
集成
4.集成模拟法
上述3种人工智能的研究方法各有长短,既有擅长的处理能力,又有一定的局限性。仔细学习和研究各个学派思想和研究方法之后,不难发现,各种模拟方法可以取长补短,实现优势互补。过去在激烈争论时期,那种企图完全否定对方而以一家的主义和方法主宰人工智能世界的氛围,正被互相学习、优势互补、集成模拟、合作共赢、和谐发展的新氛围所代替。
采用集成模拟方法研究人工智能,一方面各学派密切合作,取长补短,可把一种方法无法解决的问题转化为另一方法能够解决的问题;另一方面,逐步建立统一的人工智能理论体系和方法论,在一个统一系统中集成了逻辑思维、形象思维和进化思想,创造人工智能更先进的研究方法。要完成这个任务,任重而道远。
五、人工智能主要的研究方向有哪些?
人工智能的主要研究方向有机器人技术机器视觉,语言理解和沟通,机器学习认知和推理,游戏和道德六个方向
人工智能时代服务的入口主要是自然语言的语音互动,自然语言处理会使人机交互的主要模式
六、中国戏曲主要采用
中国戏曲主要采用声腔、唱腔、说腔、曲调、音韵等方式来表现人物形象和情感,是中国传统文化的瑰宝之一。中国戏曲源远流长,拥有悠久的历史和丰富的表现形式,成为中国人民喜闻乐见的艺术形式之一。
中国戏曲主要采用的声腔
声腔是中国戏曲表演中不可或缺的元素之一,它通过不同的声调、音量和音色来塑造人物形象和情感。不同类型的戏曲有着各自独特的声腔体系,如京剧的“四大生旦净末”声腔,越剧的“花旦唱腔”等。
中国戏曲主要采用的唱腔
唱腔是中国戏曲中重要的表现形式之一,它通过歌唱来表达人物的心情和情感。唱腔在不同类型的戏曲中有着不同的风格和技法,如豫剧的“拉腔”、越剧的“绕口令唱腔”等。
中国戏曲主要采用的说腔
说腔是中国戏曲中独特的表现形式之一,它通过语言的变化和节奏感来表达人物的性格和情绪。说腔在京剧、评剧等戏曲中广泛应用,成为角色形象的重要组成部分。
中国戏曲主要采用的曲调
曲调是中国戏曲表演中的重要元素之一,它通过旋律和节奏来表现人物的情感和性格。不同类型的戏曲采用的曲调有所不同,如黄梅戏的“花鼓曲调”、评剧的“胡琴曲调”等。
中国戏曲主要采用的音韵
音韵是中国戏曲中特有的表现方式之一,它通过声音的美妙和韵律来感染观众的情感。音韵在不同类型的戏曲中有着不同的特点和独特之处,体现了中国戏曲的丰富多彩。
总的来说,中国戏曲主要采用声腔、唱腔、说腔、曲调、音韵等多种方式来表现人物形象和情感,通过精湛的表演技法和丰富的表现形式,展现出中国戏曲独特的艺术魅力,深受观众喜爱。
七、研究生,人工智能主要学习什么课程?
研究生人工智能主要学习的课程是电子计算机与应用,还有PC编程,这些都是很高端的基础课程,所以人工智能是非常难学习的一门课程。
八、人工智能研究方法之间的主要区别?
由于研究者的专业和研究领域的不同以及他们对智能本质的理解有异,因而形成了不同的人工智能学派,各自采用不同的研究方法。与符号主义、联结主义和行为主义相应的人工智能研究方法为功能模拟法、结构模拟法和行为模拟法。此外,还有综合这3种模拟方法的集成模拟法。
功能
1.功能模拟法
符号主义学派也可称为功能模拟学派。他们认为:智能活动的理论基础是物理符号系统,认知的基元是符号,认知过程是符号模式的操作处理过程。功能模拟法是人工智能最早和应用最广泛的研究方法。功能模拟法以符号处理为核心对人脑功能进行模拟。本方法根据人脑的心理模型,把问题或知识表示为某种逻辑结构,运用符号演算,实现表示、推理和学习等功能,从宏观上模拟人脑思维,实现人工智能功能。
功能模拟法已取得许多重要的研究成果,如定理证明、自动推理、专家系统、自动程序设计和机器博弈等。功能模拟法一般采用显示知识库和推理机来处理问题,因而它能够模拟人脑的逻辑思维,便于实现人脑的高级认知功能。
功能模拟法虽能模拟人脑的高级智能,但也存在不足之处。在用符号表示知识的念时,其有效性很大程度上取决于符号表示的正确性和准确性。当把这些知识概念转换成推理机构能够处理的符号时,将可能丢失一些重要信息。此外,功能模拟难于对含有噪声的信息、不确定性信息和不完全性信息进行处理。这些情况表明,单一使用符号主义的功能模拟法是不可能解决人工智能的所有问题的。
结构
2.结构模拟法
联结主义学派也可称为结构模拟学派。他们认为:思维的基元不是符号而是神经元,认知过程也不是符号处理过程。他们提出对人脑从结构上进行模拟,即根据人脑的生理结构和工作机理来模拟人脑的智能,属于非符号处理范畴。由于大脑的生理结构和工作机理还远未搞清,因而现在只能对人脑的局部进行模拟或进行近似模拟。
人脑是由极其大量的神经细胞构成的神经网络。结构模拟法通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。与功能模拟法不同,结构模拟法是基于人脑的生理模型,通过数值计算从微观上模拟人脑,实现人工智能。本方法通过对神经网络的训练进行学习,获得知识并用于解决问题。结构模拟法已在模式识别和图像信息压缩领域获得成功应用。结构模拟法也有缺点,它不适合模拟人的逻辑思维过程,而且受大规模人工神经网络制造的制约,尚不能满足人脑完全模拟的要求。
行为
3.行为模拟法
行为主义学派也可称为行为模拟学派。他们认为:智能不取决于符号和神经元,而取决于感知和行动,提出智能行为的“感知——动作”模式。结构模拟法认为智能不需要知识、不需要表示、不需推理;人工智能可能可以像人类智能一样逐步进化;智能行为只能在现实世界中与周围环境交互作用。
智能行为的“感知——动作”模式并不是一种新思想,它是模拟自动控制过程的有效方法,如自适应、自寻优、自学习、自组织等。现在,把这个方法用于模拟智能行为。行为主义的祖先应该是维纳和他的控制论,而布鲁克斯的六足行走机器虫只不过是一件行为模拟法(即控制进化方法)研究人工智能的代表作,为人工智能研究开辟了一条新的途径。
尽管行为主义受到广泛关注,但布鲁克师的机器虫模拟的只是低层智能行为,并不能导致高级智能控制行为,也不可能使智能机器从昆虫智能进化到人类智能。不过,行为主义学派的兴起表明了控制论和系统工程的思想将会进一步影响人工智能的研究和发展。
集成
4.集成模拟法
上述3种人工智能的研究方法各有长短,既有擅长的处理能力,又有一定的局限性。仔细学习和研究各个学派思想和研究方法之后,不难发现,各种模拟方法可以取长补短,实现优势互补。过去在激烈争论时期,那种企图完全否定对方而以一家的主义和方法主宰人工智能世界的氛围,正被互相学习、优势互补、集成模拟、合作共赢、和谐发展的新氛围所代替。
采用集成模拟方法研究人工智能,一方面各学派密切合作,取长补短,可把一种方法无法解决的问题转化为另一方法能够解决的问题;另一方面,逐步建立统一的人工智能理论体系和方法论,在一个统一系统中集成了逻辑思维、形象思维和进化思想,创造人工智能更先进的研究方法。要完成这个任务,任重而道远。
九、人工智能的研究领域主要是什么?
人工智能(AI)的研究领域十分广泛,主要涵盖了多个方面。以下是一些主要的研究领域:
机器学习:机器学习是人工智能的核心技术之一,它通过分析大量数据来训练模型,使计算机能够自动识别和提取数据中的模式和规律。机器学习可以分为监督学习、无监督学习、半监督学习和强化学习等多种类型。
自然语言处理(NLP):自然语言处理是指利用计算机处理人类语言的能力,实现人机之间的自然语言交互。这包括语音识别、综合、人机对话、机器翻译等内容。
计算机视觉:计算机视觉是指利用计算机对图像和视频进行识别、理解和解释的技术。这包括图像分割、阈值设定、图像采样、光度立体视觉等内容。
机器人技术:机器人技术是人工智能的一个重要应用领域,它涉及到机械、电子、计算机等多个学科的知识。智能机器人需要具备环境感知、路径规划、行动执行等多个方面的能力。
认知和推理:这是研究机器人的思维能力,包括各种身体和社会常识的认知和推理。
游戏和道德:这个领域主要研究多智能体、机器人和社会整合的互动、对抗和合作等多方面的内容。
除了上述主要领域外,人工智能还涉及到许多其他领域,如专家系统、知识表示和推理、人工智能规划、智能控制、自然语言理解、计算机视觉、智能感知、智能学习、数据挖掘、知识管理、人工智能伦理等。这些领域共同构成了人工智能的丰富内涵和广泛应用。
此外,人工智能的应用范围也非常广泛,包括计算机科学、金融贸易、医药、诊断、重工业、运输、远程通讯、在线和电话服务、法律、科学发现、玩具和游戏、音乐等诸多方面。随着技术的不断发展,人工智能将在未来发挥更加重要的作用,为各行各业带来更多的变革和创新。
十、人工智能的研究领域主要有哪些?
人工智能(Artificial Intelligence, AI)是一个广泛的研究领域,它包括许多子领域和研究方向。以下是一些主要的人工智能研究领域:
1. **机器学习(Machine Learning, ML)**:研究如何使计算机能够通过经验改进性能,包括监督学习、无监督学习、半监督学习、强化学习等。
2. **深度学习(Deep Learning, DL)**:一种特殊的机器学习方法,使用神经网络,尤其是深度神经网络来模拟人脑处理数据的方式。
3. **自然语言处理(Natural Language Processing, NLP)**:研究如何使计算机理解和生成人类语言,包括语音识别、机器翻译、情感分析、文本生成等。
4. **计算机视觉(Computer Vision, CV)**:研究如何使计算机能够理解和解释视觉信息,包括图像识别、图像分类、目标检测、图像分割等。
5. **机器人学(Robotics)**:研究如何设计和控制机器人,包括机械设计、感知、决策、控制等。
6. **知识表示和推理(Knowledge Representation and Reasoning)**:研究如何使计算机表示和处理知识,以及如何进行逻辑推理和问题解决。
7. **专家系统(Expert Systems)**:模拟人类专家决策过程的计算机程序,用于解决特定领域的问题。
8. **智能代理(Intelligent Agents)**:研究如何设计能够自主行动和响应环境变化的软件代理。
9. **认知计算(Cognitive Computing)**:模拟人类认知功能的计算系统,包括学习、推理、感知和语言理解。
10. **人机交互(Human-Computer Interaction, HCI)**:研究如何设计和实现人与计算机之间的有效交互。
11. **伦理、法律和社会影响(Ethics, Law, and Society)**:研究人工智能技术对社会、伦理和法律的影响,以及如何制定相应的政策和规范。
12. **人工智能安全(AI Safety)**:研究如何确保人工智能系统的安全性和可靠性,防止恶意使用和意外后果。
这些领域之间存在交叉和相互影响,随着技术的发展,新的研究方向和子领域也在不断出现。人工智能的研究旨在使计算机能够执行更复杂的任务,提高效率,解决人类面临的各种挑战。